Tool Support for Model Driven Development of Pervasive Systems

Carlos Cetina, Estefania Serral, Javier Mufioz, Me®elechano
Department of Information System and Computation.
46022 Cami de Vera s/n.
Technical University of Valencia, Spain
{ccetina,eserral,jmunoz,pele}@dsic.upv.es

Abstract concepts (specifying how the functionality must be
implemented). In this context, a model driven appfo

This work presents the PervML Generative Tool Seems a good option, since this strategy is suppise
(PervGT) that supports a model driven method fer th Provide this characteristic. .
development of pervasive services in ubiquitous A Widely accepted statement is that tools are nitede

environments. The tool, which is based on the Eelip in order to put in practice in an effective way thie
p|atform, provides facilities for the graphica| teChniqUes involved in the construction of a Model

description of pervasive systems using PervML, a Driven Software Development (MDSD)-based method.
UML-like modeling language. Once the pervasive Without tools which automate the steps that must be
system is specified, the PervML model is used@stin carried out during the application of such kind of

to a transformation engine that generates sourageco Methods, most of the promised benefits can not be
and other implementation assets. This generate& cod obtained.

extends an OSGi-based framework in order to build This work introduces a tool which supports a model

the final pervasive applications. driven method for the development of pervasive
services in ubiquitous environments [3]. The metlsod
1. Introduction based on the specification of the pervasive system

using PervML [25], a high level of abstraction UML-
like language. The tool, which is deployed as an
Eclipse plug-in, provides facilities for the grapdl
description of pervasive systems. Then, the PervML

As stated in [8], the next few years will determine
the success or failure of Ubiquitous Computing
research”. Pervasive systems are moving from the o . :
academy to the industry, and this evolution implrest specifications are automatically translated intwala

the systems under development are more complex anc?Ode by a transfo_rmatlon engine that is integratatie
with more quality requirements than in research development environment. The generated code extends

prototypes. Thus, solid engineering methods are@n OSGi-based framework in order to build the final

needed in order to produce robust systems in anPervasive appl!catlons._ g .
efficient way. If we fail in providing specific mebds The paper Is organized as follows: first Section 2

which solve the challenges that pervasive systeawe h Erieﬂy pfreﬁents tne nS10d§I dri?\’/erl: methrc]) d \lNhi.Cthht
introduced, it will be very hard to completely aebe asis of the toolln Section 3 the technologies that

the vision that was disseminated by Weiser. have been used for implementing the different

In order to deal with the increasing complexityisth _components of the tool are presented. Sect|or_1 4
kind of methods must also increase the abstraction'mmduces the PervML Generative Tool. Subsection

level of the concepts that are used for building 4.1 pre_se_nts the tool architecture ar_ld describesyev
pervasive systems. Following this strategy, the too: ?“'ld'”% block, wh_erea? S_ubseltit_lon”4.285hd_\g t
developers describe the system using primitiveshvhi ©° fomht e usei-r point o I V'e(;N- II?a y'd fs;?tl

are suitable for the problem domain (specifying wha c<f)nta|ns the conclusions, related works and Tutnes
the system must do) instead of using technological0 researcn.

" This work has been developed with the support BMinder the project DESTINO TIN2004-03534 andreficed by FEDER.

PervML Specification X
Transformation

Java

Analyst Engine Compiler
System Analyst View
g L I S R
= P & 2
E @ Code ¢@
Architect
m VIeW

System Architect

N

OSGi
Drivers
OSGi
Bundles
§|

Pervasive System

=

OSGi Developer

Drivers
Repositor y

OSGi Server

Framework
J

Figure 1: Model driven method for the developmdmiervasive services that is supported by the tool

2. A Model Driven Development Method
for Pervasive Systems

The proposed method for the development of
pervasive systems applies the guidelines definetthdy
Model Driven Architecture (MDA), which is supported
by the Object Management Group (OMG), and the
Software Factories, which is supported by Microsft.
Figure 1 presents an overview of the model driven
method for the development of pervasive services in
ubiquitous environment [3] that is supported by the
tool. The figure shows the developers which are in
charge of performing the method steps and the sasset
that are produced during the development process.

The method provides (1) a modeling language
(PervML) for specifying pervasive systems using
conceptual primitives suitable for this domain, é2)
implementation framework which provides a common
architecture for all the systems which are develope
using the method, and (3) a transformation endiag¢ t
translates the PervML specifications into Java code

The implementation framework, which is introduced
in [4], provides similar abstract classes to theviRi&
conceptual primitives (Service, Trigger, Interaotio
etc.) in order to facilitate the translation prace$he
framework has been build on top of the OSGi
middleware [1], which is a standard Java-based and
dynamic execution environment for services. This
technology has bridges to many of the technoloijias
can be used in pervasive systems and provides high
level of abstraction implementation constructs.

In summary, a development team must carry out the6
following steps in order to produce a pervasiveeys
using our method:

1. The system analyst specifies the system
requirements using the service conceptual
primitive. The system analyst uses three kinds of
PervML models in order to describe (1) the kind of
services available on the system, (2) the number of

services which are available in every location and
(3) how they interact when some condition holds.
The system architect selects the kind and number
of devices or software systems that are more
suitable in order to provide the services specified
by the analyst. The selection could have into
account economical reasons or constraints in the
system physical environment. The pervasive
system architect uses other three PervML models
for describing (1) the kind of devices or software
systems that are used for providing the system
services, (2) the specific elements that are gting
implement every service and (3) the actions that
the device or software systems must carry out for
providing every service operation.

An OSGi developer implements the drivers for
managing the devices or software systems which
were selected by the system architect. These
drivers provide access from the OSGi-based
framework to the devices or external software
systems. They must be developed by hand, since
they deal with technology-dependent issues. If any
device or external software system was used in a
previous system, the same driver can be reused.
The transformation engine is applied to the
PervML specification. Many Java files and other
resources (Manifest files, etc.) are automatically
generated as a result of this action.

The Java files are configured in order to use the
selected drivers. This configuration only implies t
set up the drivers identifiers.

Finally, the generated files are compiled, packaged
into bundles (JAR files) and deployed in the OSGi
server with the implementation framework and the
drivers.

In [5], a case study where this model driven
approach is applied is introduced.

3. Technological Background

Until a few years ago, it was hard to find solidl&®
that provide facilities for developing complete pap
to MDSD methods, since most of the them were
focused on one concrete technique for one concrete
concern (metamodel definition, model management,
graphical editors construction, model-to-model or
model-to-text transformations, etc.). Hopefullynew
generation of frameworks and technologies which
support the main steps in MDSD methods is rising. |
this work, the Eclipse platform and several of its
available plug-ins have been used to develop such &
kind of MDSD tool for pervasive systems
development. Next, a brief description of these
technologies is included.

3.1. The Eclipse Platform

Eclipse was initially the IBM IDE for Java
development, which was released as free software.
Currently, it is the base platform for many other
technologies and projects due to its very powerful
modular structure and its open nature. Most of the
Eclipse plug-ins are related to software develogmen
but not necessarily using Java.

Eclipse is organized in a set of first level themat
projects which guides the evolution of more coreret
projects. The Eclipse Modeling Project is the fiestel
project that unifies the modeling related projeatsl
plug-ins that are developed by the Eclipse commgunit
(other modeling plug-ins are developed by third
parties, since Eclipse is an open platform). Seéwafra
the projects in the Eclipse Modeling Project haeerb
used for the development of our tool, like the pd
Modeling Framework (EMF), the Graphical Modeling
Framework (GMF) and the MOFScript Tool.

3.2. The Graphical
(GMF)

Modeling Framework

The Graphical Modeling Framework (GMF)
provides a generative component and runtime
infrastructure for developing graphical editorsdzhsn
other two Eclipse plug-ins: EMF and GEF. The Edips
Modeling Framework (EMF) is a modeling set of tools
and code generation facilities for specifying
metamodels and managing (creating / editing / gpin
loading) models instances. The Graphical Editing
Framework (GEF) provides libraries and a predefined

2 http://www.eclipse.org/gmf/

programming architecture for building graphical
editors using the Eclipse infrastructure.

Depelop
Domain Model

Develop
Graphical
Definition

Depelop
Mapping
Model

Create GMF
Project

i

*gmigraph - grimap
Develop
Tooling

Definition

Create
Generator
Model

i

*.gmitool

“ gmigen
Generate

Diagram

Plug-in

Figure 2: GMF Process Overview.

[9] provides a description of the framework and the
overall process workflow that must be carried aut t
use the assets that are supplied by the projedathvid
summarized in Figure 2 that has been taken from the
official tutorial. In short, the graphical editoewkloper
must define (1) the domain model (metamodel), li2) t
graphical definition (available figures), (3) tawli
definition (Ul related issues) and (4) the mapping
model which relates the three previous models. Then
GMF is in charge of producing a generator model
which can be fine tuned. With all these models, the
generative component of GMF automatically produces
the graphical editor.

3.3. The MOFScript Language/T ool

The MOFScript tool is included in the Generative
Modeling Technologies (GMT)Eclipse project. The
objective of this project istt produce a set of
research tools in the area of MDE (Model Driven
Engineering”. In this context, the MOFScript project
“aims at developing tools and frameworks for
supporting model to text transformation This
subproject has been developed in a development
community at SINTEF, supported and tested by the
European Integrated Project MODELWARE.

The MOFScript tool is an implementation of the
MOFScript model to text transformation language [7]
This language was submitted to the OMG as response
to the ‘MOF Model to Text Transformation Language
RFP’ [6]. It provides mechanisms for generating text
from MOF-based models, controlling the sequence of
execution, string manipulation, easy productiofile$,

® http://mww.eclipse.org/gmt/

traceability of models and generated text, etc. itugl
based on the QVT standard.

4. PervGT: The PervML Generative Tool

Model driven methods must be supported by tools
in order to be applicable in an effective way. The
PervML Generative Tool (PervGT) allows pervasive
systems developers the creation of graphical dmagra
and the automatic translation of these diagranusthre
final implementation code using a transformation
engine.

In section 4.1., the tool is analyzed from an
architectural perspective, where the relevant ingld
blocks of the tool are identified and explainedeveas
in section 4.2., the tool is described from the asdrs
perspective and the features of the tool to imptitree

Figure 3: Tool Architecture.

usability are remarked. The primitives that this language provides are lzssti
_ of the modeling concepts that are present in MCGFE 1.
4.1. Tool Architecture From the PervML Ecore model the plug-in EMF

generates a set of Java classes representing eadf o
PervGT gives support to the most relevant aspectsthe PervML metamodel concepts. Moreover, the
of a model driven generative tool: generated Java classes provide methods to modify
e Model management. The models are PervML models according to the PervML metamodel.
manipulated (create / edit / save / load) To save/store the PervML model instances PervGT
conforming to the PervML metamodel. makes use of the EMF runtime persistency capadsliti
Furthermore, models should be stored The model persistency is achieved according to XMl
according to any standard in order to improve 2.0. XMI is the OMG standard for interchanging
the interoperability with others tools. models.
» Graphical model edition: To give full support to
the modeling language the tool must represent 4.1.2 Graphical model edition
the model elements according to a concrete
syntax of the language. The PervGT graphical editor has been developed
« Code generation: Models are used as input to ausing the GMF Eclipse plug-in. The GMF plug-in
transformation engine which produces as provides an editor to specify in a declarative way
output source code of a pervasive system. graphical editors, and also provides a runtime eher
Figure 3 graphically shows the principal building common functionality related to graphical editoss i
blocks of the tool and how are they related. Nexgry ~ already implemented, like model printing or autamat

tool building block is briefly described. layout algorithms.
The PervML language proposes different models for
4.1.1 M odel management each one of the parts of the pervasive systemishat

going to be specified. According to this, the PeFvG

The PervGT tool provides support to the creation tool provides a graphical editor for each one & th
and edition of PervML model instances conforming to different models that are proposed in the PervML.
the PervML metamodel. The PervML metamodel Representing model elements with graphics metaphors
determines which model elements can be created andnakes that new attributes appears those attributes
how they can be related. The PervML metamodel associated to the model elements, like the sizsitipo
defines fourty five metaclasses and eighty six or color of the figure. To store all this new diiites
metarelationships. the GMF plug-in provides two approaches:
1. The information that is related to the model is

stored in one file (model file) and the

information that is related to the graphical

To implement the PervML metamodel we have created a
Ecore model. Ecore is the language that is provigethe
EMF plug-in to define metamodels.

representation is stored in another one All constraints of the diagrams are defined in the
(diagram file). GMF plug-in using OCL expressions. An example of
2. Both the model information and the graphical constrain could be the following:
representation information are stored in the
same file. (Defined over the metaelement Ser\{ice)
In the PervGT tool the persistency is realized NOUSelf.Name.equals(PervMLService’))
according to the first option in order to promote
separation of concerns.
Since the PervML language proposes differen
models to specify a pervasive system, elementsién o ; ;
model can be referenced form others models. Inrorde °€€n named using the reserve word PervMLService.

to support this characteristic, PervGT provide Ifaes In _order_ to build a complete PervML model, the
to refer elements from one diagram to another, graphical diagrams must be completed with a textual

guarantying the consistency between diagrams. EverspPecification. Pe_rvML uses the U_ML Action Semantics
the referenced elements can have distinct graphical-an9uage (AS) in order to specify part of the syste

representation in each one of the diagrams that the P€haviour. Due to that ASL doesnt proposes a
appear. For instance, a service could be reprasémte standard concrete syntax, PervML uses a subset from

a diagram as a UML classfinterface (where its the Kennedy Carter proposal [10]. The tool provides

operations are shown), and in another diagramates ~ €ditor of textual models where users define ASL
service is represented using the “lollipop” notatio expressions. This editor of textual models has been

In the process of editing a model there are somedeveloped using the Xtext framework from the
constrains that must be guaranteed. In PervGT #rere openArchitectureWare (0AW) . plug-ln.l . .OAW IS a
defined three constraint validation levels, depegdin ~ 9€nerator framework that provides facilities toatee
the feedback that should be given to the end user: text editors, checks constraints and has strongastip

1. Some actions are forbidden to be carried out of EMF.
by the users. For instance the PervML
language only allows relationships between
services. The tool shouldn’t allow the creation

of a relationship from a Service and other kind Once the pervasive system S modelled, the
of element. This kind of constraints is transformation engine can be applied to generage th

guaranteed by construction and they don't code. For this task, we have used the MOFScript
language which provides capabilities navigating
models, creating files, etc. MOFScript takes asutinp
2. Some actions performed by the user can incur ©ne model (or several) and applies over one selecte
in a temporal infraction, like creating a new metaelement a contextual _rule. The applied rule can
service and lefting temporally the name blank. access the element properties, navigate over thede

In these cases the tool do not warn the userMOdel elementsr?nd invoke Iothe:jrlljles. o dition i
about that situation, because it's probably that As PervML has several models, when edition is

the next action will be to enter the hame to the finished, the model is divided in several files.druer
Service. To check these constraints the tool to facilitate the tran.sllatio.n processz before gatiey
provides a validation under demand engine to the code, PervGT joins in one unique model all the

avoid bothering the user with feedback models needed to specify the pervasive system.
messages while he is working The code generation process must navigate through

3. Finally, some actions should never be allowed model elements and generate the needed code. For
but they can't be avoided by the tool. For achieving this goal, three sets of rules have been

instance two services shouldn’t share the Samempleme_nted: .

name but users can create two Services with First, a rule navigates from the root metamodel
the same name. In that case the tool cannot element to the different meta-elements that are
know which one of them is wrong. In this kind the source for creating the files to be generated.

of constraints the tool checks the constraints 2+ 1he Previous rule invokes a set of rules that (1)
online and it notifies users immediately. setup the environment of the meta-elements that

are interesting from the code generation point
of view and (2) invoke the rules that generates
the text (which are described below). The

This constraint is of the third kind, that is toysa
t that they are validated online and that it notifisers
immediately about the existence of a service tlzt h

4.1.3 Code generation

provide feedback to the user due that they can
not be violated.

configuration of the environment implies
defining files paths, files names and/or files
extensions, creating the files, defining /** Generating the Component*/
configuration parameters, therefore these rules 2ﬁffggggfgtz’gg:fpgdrggr;'t’gg’ggﬁgg)e”t"a"a")
mainly composed by properties definitions and
file statements for creating the files that will be /** Generating the Component Triggers™/
filled by the followed rules. e g ger >forkach
3. Finally, a set of rules that generate the text that file triggerFile (dir+"/Trigger"+counter
is printed in the files which were created before ~ *-java’) .
. . - trig.generateTrigger(counter,self)
have been implemented. In order to achieve this cqunter = counter + 1
goal, the rules use the properties of the context }
meta-element where it was applied and it also,
can navigate over the neighbors elements for
accessing their properties. These rules are Once all the variables are correctly initializea th
mainly composed by escaped output (or print rule that configures the environment is ready imke
sentences), since they contain mostly text that the generation rules to obtain the Java code.
must be copied “as is” to the target file. This In the third kind of rulesiext generation rules,
text is completed by sentences that access theComponent properties and literal text are combined
metaelements properties. to produce the Java classes. Furthermore some
Next we show an example of the rules that have Component model elements neighbors, like the
been defined to transform the primiti@mponent Trigger element or thélethod element, are visited
(which is defined in the PervML language) into arie in the process of generating the Java code.
the classes that it generates. Partial sectiotteafules
are going to be shown to illustrate the principal import“SharedRules.m2t’
differences of the three kinds of rules definedvabo texttransformation Component
In the first kind of rule, thenavigation rules, the (in pervml:
model is navigated in order to reach all the Conepon ttp:///org/oomethod/pervml.ecore”) {

instances. pervml.Component:: gener at eConrponent (){
var idCounter:Integer = 1

var counter =1

pervml.PervMLModel::main() {

|f(generateComponents == true){ <"/ﬁcpa}pkage org.pervml.application.components.%>
self.StructuralModel.Component selr.alias
->forEach(c:pervml.pComponent){ <%;import org.osgi.framework.BundleContext;%>
c.generateFromComponent() self.genetareDependencylmports()
} <%public class Component extends
org.pervml.application.services.%>
} self.serviceProvided.name<%.GenericComponent {

public Component(BundleContext c, String

. . . componentPid){
Due to theComponent primitive is a first level super(c,componentPid);%:>

concept in the PervML language, tlf@omponent . -
. . . ->
instances are reached in a near straight way ft@m t fs;éaé’ﬁztfi%?ggrv,ﬂﬁ%ﬁ;ger) {
model root element. For each one of @@mponent printin("\t\t this.listaTriggers.insertar(
. ; new Trigger"+idCounter+"(this));")
instances reached, a contextual rule for settig th i~ R s et 1
environment is invoked. }

In the second kind of rules, thalesthat setup the <%}//End Component()

environment, all the variables needed in the generation i void initializeProperties(){

rules are initialized. this.serviceName="%>
self.alias<%";]
pervml.Component::generateFromComponent this.location=" %self.getLocation() <%";
(location:String) { 1%> //End initializeProperties()
property packageDir ="src/pervml/components” self.ComponentFunctionalSpecification.Method
property baseDir = "Components/" ->forEach(me:pervml.Method) {
property projectName = "Comp_"+ self.alias print("\t protected ") _
property projectRoot = baseDir + projectName me.SerwceOp_erann.generateOperatlon(
property dir = "Implementation_")

projectRoot+"/"+packageDir+"/"+ self.alias printin(*{")

if (me.ServiceOperation.returnValue.name
1= "void")
printin("\t\t"+me.ServiceOperation.
returnValue.name+" returnValue =" +
me.ServiceOperation.returnDefaultValue()
+)
self.generateBody()
if (me.ServiceOperation.returnValue.name
1="void")
printin("\t\t return returnValue;")
printin("\t\t }")

<%}%> //End class Component
Y/End generateComponent()
}

The generation rule creates @emponent Class,
indicating the genericComponent (service) of which
extends and which is specified in the models. sbal
adds the triggers references of the componenttterd
it generates the static and the dynamic part of the
Component class. In other words, it generates dle c
that is in charge of initializing the Component
properties (like the name and physical locatiomy a
the body of its methods.

As stated in Section 2, the generated files are
configured in order to use the drivers that intereith
the devices or software systems that implement the
system services. Finally, the generated files are

compiled, packaged into bundles (JAR files) and
deployed in the OSGi server with the implementation
framework and the drivers.

4.2. Tool User Interface

Once the tool architecture has been described, this
section introduces PervGT from the end user pdint o
view. The tool elements are going to be identifed
briefly described. Furthermore the assistance
capabilities of the tool are going to be analyzed.

In Figure 4, a general view of the tool is shown.
The interface of PervGT is divided in seven parts:

On the zone 1 we can see thenu bar, where we

can find out all of the functionality that usersica
execute. In this menu bar, there is thervML
Model menuvhere entries to specify and validate
the system and generate the code have been
included.

Below, in the zone 2, théool bar gives direct
access to the most used functionality, like direct
model storage, change zoom, automatic layout and
SO on.

& Java - Services.servicesModel _diagram - Eclipse SDK
Fle Edt Navigste Search Project Diagram Run | PervML Model Window Help

L [l e C Q- Q- gy Ceste Architect dagees ¥ o 5 5 Debug [B7 7 |
Create Analyst Diagr s B < SR — - e
4 By m AT H - || 100% -
Validate Diagram —
Generate Code
({5 Project Explorer 52 =1 w o =5
= ————— Palette - 3
= = Tumination & Advanced Security- Iy Select
2 f;p‘J PervML-Project Care

&£ 5TD
* @ BindingsProviders, bindingProvic |
- |Z| BindingsProviders bindingProvic
1% ComponentsStructural.compone
=| ComponentsStructural. compone
-l Interaction.interactionModel
_ Interaction interactionModel_di

+ getState()

[perv pervl + switchon()
e Servi cesModel + switchOff()
[Services.servicesModel_diagrar
~ I} Structure structuraiModel
|=| Structure. structuralModel_diag
(=9 PervML-Project LPY Exsenices> GredualLightng

+setIntensity()
+ getintensity()

&

¥, Zoom - Left dick to
zoom in, shift-+Heft
click to zoom out,
drag to zoom to
selection,

[Note - Create &
Mote

{~= Services
Servi
Servi
[Category - Create
a Category
| (== Services Elements #
0OF Operation -
Create an
Operation

| = Services Relati... #

4 Inherits - Create
an Inherits relation

+ Agregates -
Create an
Agregates relation

+ currentMediaSource()

.EE Outline &2
Properties | Consale |:_ Problems 2 . PervGT Dashboard
1error, 1 warning, 0infos
Description
= Errors (1 item)
@ EL nombre de un servicio no puede coincidir con ' S
= % Warnings (1 item)
&) Los nombres de los servicios deben ser Gnicos. 5

Resource

=]
i g

Path
@PewML-Project Care

PervML-Project Care

Location
Ervices,se <ServicesMa..,

Ervices,service. .. <ServicesMa...

Figure 4: The PervGT user interface.

On the left in zone 3, we can see tAeoject system, as it is show in the figure 6. With thephef
Explorer where projects and their contents are the dashboard, the user gets feedback about the
shown. PervGT support drag and drop an elementdifferent diagrams that must be specified to coteye
from the Project Explorer to a diagram so it may specify a pervasive system using PervML. In the
create a link from a diagram to an element of other dashboard the diagrams are represented, including
diagram. precedence relationships. The relationships and the
Below to the Project Explorer, in zone 4, the view information about what diagrams have been already
Outline is shown. This view allows to user to have created determinate what actions can be executed ov
a tool global vision of the diagram and it also the diagrams.

remarks the part of the diagram that is visualized Using the elements of the dashboard, users can
in the main view. Besides, in this view the user ca create new diagrams or even they can generate
see diagram elements as a tree form. diagrams by default, like in the case of the State
In the middle, zone 5, we can see #déor area Transition Diagram (STD), where the tool can
where the model graphic representation is shownautomatically generate a new STD with one unique
and can be manipulated. state.

On the right, in zone 6, we can see Paette, Once the complete system is specified, user can
where there are some common functionalities andinvoke the transformation engine to generate thal fi
the graphical elements of the selected diagram thatmplementation code. From thePérvML model

user can select to paint them in the diagram. menu, trough the “Generate” entry, the transforomati
Finally, at the bottom in zone 7, there are twestab €ngineé is launched. The transformation engine
the Problem tab, which shows the problems, or 9enerates the Java code and Eclipse projects teady
errors that have been identified in the system andimpPort with all the needed references to otherpseli

the Properties tab, which allows users to see and Projects. The goal of generating Eclipse projesttoi

to manipulate attributes of the diagram selected facilitate to the user the Java process of marijngla
element. and compiling the generated code.

diagram - Eclipse SDK

Moreover, PervGT provides a cheat sheet for each®.

diagram in order to guide the system specification .
process. A Cheat sheet is a special view thatshékp
user through a series of tasks to achieve an dveral
goal. The cheat sheets that have been created ca
automatically carry out certain actions for help tiser.

In figure 5 we show one, the tool cheat sheetdter
Structure diagram.

Progress: 0% done. @ o

$-0-Q- G- - o 25 %5 Debug [§1ome

«««««««« Exlorer = 0|1 services.servicestocel_dagram e = O] @7 creat sheess 5% S

Structural Model Tutorial

Jcare/Hal

Graduallighting Lighting

Figure 6: The dashboard view.

Lighting Lighting

s Wi 5. Conclusions

For making true the benefits promised by model
driven approaches, tool support must be providée. T
development of such a kind of tools used to berd ha
task but, hopefully, big players in the softwardustry
like Microsoft and IBM are betting strong for the
model driven development. As a result of thesertsffo
new technologies are rising (for instance, the g=di

Furthermore the tool provides a landscape view of GMF project and the Microsoft DSL Tools) that
the complete process of specify a new Pervasivefacilitate the development of applications whictede

Figure 5: The cheat sheet assistant.

to manage models. In this paper, the Pervasive[5] J. Mufioz, V. Pelechano and C. Cetina, “Impletirena
Generative Tools (PervGT), an Eclipse/GMF based Pervasive Meetings Room: A Model Driven Approach”
tool, has been introduced. PervGT implements a tode Proceedings of the 3rd International Workshop on
driven approach for the development of pervasive Ubiquitous Computing, IWUC 2008NSTICC Press, 2006,
services in ubiquitous environments. More informati PP 13-20

about the approach can be found in [2], [3], [4] &) [6] Object Management Group. “MOF Model to Text

Our future work r_egarding the tool is focused on Transformation Language - Request For Proposal4200
two main research lines. On one hand, we plan to

explore the capabilities of the method/tool foridap [7] J. Oldevik, T. Neple, R. Gronmo, J. Aagedald ah.
prototyping pervasive systems. Since the models thaBerre, “Toward Standardised Model to Text
are used in PervML are organized in two layers of Transformations”"Model Driven Architecture. Foundations
abstraction (analysis and detailed specificatiomy, ~ 2nd Applications: First European Conference, ECMBA:
think about providing a default detailed specificat ~ SPinger Berlin / Heidelberg, 2005, 3748, pp. 353

which enables the automatic code generation fran th 8] R. Sharp, “Deploy or die: A choice for applicat-led

high level of abstraction models. Following this ubiquitous computing research,” iWorkshop on What

strategy, pervasive system users could early v@lida makes for good application led research in ubiquito
the abstract models. computing? 2005.

On the other hand, we are interested on applying
product line techniques on the pervasive systeeid.fi [9] A. Shatalin, A. Tikhomirov, “Graphical Modeling
We plan to extend the tool for supporting features Framework Architecture Overview”,Eclipse Modeling
diagrams which describe the most commonly Simposium 2006.
char_acter|st|cs of Vt_ertlcal domains (home, museums,[lo] lan Wilkie, Adrian King, Mike Clarke, Chas Wee,
retail, etc.). From this feature models, PervML eisd and Chris Rastrick. UML ASL Reference Guide. Kenned
will be derived using model-to-model transformation carter Limited, 2001

In summary, we believe that model driven
approaches can provide many benefits to the clyrent
so heterogeneous and rapidly changing pervasive
systems field, and these approaches must be sepport
by tools. PervGT is our contribution to this vision

6. References

[1] D. Marples and P. Kriens, “The Open ServiceseGay
Initiative: An Introductory Overview,” |EEE
Communications Magazinesol. 39, no. 12, pp. 110-114,
2001.

[2] J. Mufioz, V. Pelechano and J. Fons “Model Dmive
Development of Pervasive Systemsl' International
Workshop on Model-Based Methodologies for Pervaaig
Embedded Software (MOMPES 2004urku Centre for
Computer Science, 2004, pp 3 - 14

[3] J. Mufioz and V. Pelechano, “Building a Software
Factory for Pervasive Systems Developmertivanced
Information Systems Engineering: 17th International
Conference, CAISE 2005Porto, Portugal, June 13-17,
Springer-Verlag GmbH, 2005, 3520, pp. 329-343

[4] J. Mufoz and V. Pelechano, “Applying Software
Factories to Pervasive Systems: A Platform Specific
Framework” 8th International Conference on Enterprise
Information Systems (ICEIS 200GNSTICC Press, 2006,

pp. 337-342

