
Tool Support for Model Driven Development of Pervasive Systems*

Carlos Cetina, Estefanía Serral, Javier Muñoz, Vicente Pelechano
Department of Information System and Computation.

46022 Cami de Vera s/n.
Technical University of Valencia, Spain

{ccetina,eserral,jmunoz,pele}@dsic.upv.es

*
 This work has been developed with the support of MEC under the project DESTINO TIN2004-03534 and cofinanced by FEDER.

Abstract

This work presents the PervML Generative Tool
(PervGT) that supports a model driven method for the
development of pervasive services in ubiquitous
environments. The tool, which is based on the Eclipse
platform, provides facilities for the graphical
description of pervasive systems using PervML, a
UML-like modeling language. Once the pervasive
system is specified, the PervML model is used as input
to a transformation engine that generates source code
and other implementation assets. This generated code
extends an OSGi-based framework in order to build
the final pervasive applications.

1. Introduction

As stated in [8], “the next few years will determine
the success or failure of Ubiquitous Computing
research”. Pervasive systems are moving from the
academy to the industry, and this evolution implies that
the systems under development are more complex and
with more quality requirements than in research
prototypes. Thus, solid engineering methods are
needed in order to produce robust systems in an
efficient way. If we fail in providing specific methods
which solve the challenges that pervasive systems have
introduced, it will be very hard to completely achieve
the vision that was disseminated by Weiser.

In order to deal with the increasing complexity, this
kind of methods must also increase the abstraction
level of the concepts that are used for building
pervasive systems. Following this strategy, the
developers describe the system using primitives which
are suitable for the problem domain (specifying what
the system must do) instead of using technological

concepts (specifying how the functionality must be
implemented). In this context, a model driven approach
seems a good option, since this strategy is supposed to
provide this characteristic.

A widely accepted statement is that tools are needed
in order to put in practice in an effective way all the
techniques involved in the construction of a Model
Driven Software Development (MDSD)-based method.
Without tools which automate the steps that must be
carried out during the application of such kind of
methods, most of the promised benefits can not be
obtained.

This work introduces a tool which supports a model
driven method for the development of pervasive
services in ubiquitous environments [3]. The method is
based on the specification of the pervasive system
using PervML [2, 5], a high level of abstraction UML-
like language. The tool, which is deployed as an
Eclipse plug-in, provides facilities for the graphical
description of pervasive systems. Then, the PervML
specifications are automatically translated into Java
code by a transformation engine that is integrated in the
development environment. The generated code extends
an OSGi-based framework in order to build the final
pervasive applications.

The paper is organized as follows: first Section 2
briefly presents the model driven method which is the
basis of the tool. In Section 3 the technologies that
have been used for implementing the different
components of the tool are presented. Section 4
introduces the PervML Generative Tool. Subsection
4.1 presents the tool architecture and describes every
tool building block, whereas Subsection 4.2 shows the
tool from the user point of view. Finally, Section 5
contains the conclusions, related works and future lines
of research.

 Pervasive System
PervML Specification

Analyst
View

Architect
View

System Analyst

System Architect

OSGi Developer

OSGi Server

Java
Code

OSGi
Drivers

Drivers
RepositoryOSGi

Bundles

Transformation
Engine

Framework

Java
Compiler

Figure 1: Model driven method for the development of pervasive services that is supported by the tool

2. A Model Driven Development Method
for Pervasive Systems

The proposed method for the development of
pervasive systems applies the guidelines defined by the
Model Driven Architecture (MDA), which is supported
by the Object Management Group (OMG), and the
Software Factories, which is supported by Microsft.
Figure 1 presents an overview of the model driven
method for the development of pervasive services in
ubiquitous environment [3] that is supported by the
tool. The figure shows the developers which are in
charge of performing the method steps and the assets
that are produced during the development process.

The method provides (1) a modeling language
(PervML) for specifying pervasive systems using
conceptual primitives suitable for this domain, (2) an
implementation framework which provides a common
architecture for all the systems which are developed
using the method, and (3) a transformation engine that
translates the PervML specifications into Java code.

The implementation framework, which is introduced
in [4], provides similar abstract classes to the PervML
conceptual primitives (Service, Trigger, Interaction,
etc.) in order to facilitate the translation process. The
framework has been build on top of the OSGi
middleware [1], which is a standard Java-based and
dynamic execution environment for services. This
technology has bridges to many of the technologies that
can be used in pervasive systems and provides high
level of abstraction implementation constructs.

In summary, a development team must carry out the
following steps in order to produce a pervasive system
using our method:
1. The system analyst specifies the system

requirements using the service conceptual
primitive. The system analyst uses three kinds of
PervML models in order to describe (1) the kind of
services available on the system, (2) the number of

services which are available in every location and
(3) how they interact when some condition holds.

2. The system architect selects the kind and number
of devices or software systems that are more
suitable in order to provide the services specified
by the analyst. The selection could have into
account economical reasons or constraints in the
system physical environment. The pervasive
system architect uses other three PervML models
for describing (1) the kind of devices or software
systems that are used for providing the system
services, (2) the specific elements that are going to
implement every service and (3) the actions that
the device or software systems must carry out for
providing every service operation.

3. An OSGi developer implements the drivers for
managing the devices or software systems which
were selected by the system architect. These
drivers provide access from the OSGi-based
framework to the devices or external software
systems. They must be developed by hand, since
they deal with technology-dependent issues. If any
device or external software system was used in a
previous system, the same driver can be reused.

4. The transformation engine is applied to the
PervML specification. Many Java files and other
resources (Manifest files, etc.) are automatically
generated as a result of this action.

5. The Java files are configured in order to use the
selected drivers. This configuration only implies to
set up the drivers identifiers.

6. Finally, the generated files are compiled, packaged
into bundles (JAR files) and deployed in the OSGi
server with the implementation framework and the
drivers.

In [5], a case study where this model driven
approach is applied is introduced.

3. Technological Background

Until a few years ago, it was hard to find solid tools
that provide facilities for developing complete support
to MDSD methods, since most of the them were
focused on one concrete technique for one concrete
concern (metamodel definition, model management,
graphical editors construction, model-to-model or
model-to-text transformations, etc.). Hopefully, a new
generation of frameworks and technologies which
support the main steps in MDSD methods is rising. In
this work, the Eclipse platform and several of its
available plug-ins have been used to develop such a
kind of MDSD tool for pervasive systems
development. Next, a brief description of these
technologies is included.

3.1. The Eclipse Platform

Eclipse was initially the IBM IDE for Java
development, which was released as free software.
Currently, it is the base platform for many other
technologies and projects due to its very powerful
modular structure and its open nature. Most of the
Eclipse plug-ins are related to software development
but not necessarily using Java.

Eclipse is organized in a set of first level thematic
projects which guides the evolution of more concrete
projects. The Eclipse Modeling Project is the first level
project that unifies the modeling related projects and
plug-ins that are developed by the Eclipse community
(other modeling plug-ins are developed by third
parties, since Eclipse is an open platform). Several of
the projects in the Eclipse Modeling Project have been
used for the development of our tool, like the Eclipse
Modeling Framework (EMF), the Graphical Modeling
Framework (GMF) and the MOFScript Tool.

3.2. The Graphical Modeling Framework
(GMF)

The Graphical Modeling Framework (GMF)2
provides a generative component and runtime
infrastructure for developing graphical editors based on
other two Eclipse plug-ins: EMF and GEF. The Eclipse
Modeling Framework (EMF) is a modeling set of tools
and code generation facilities for specifying
metamodels and managing (creating / editing / saving /
loading) models instances. The Graphical Editing
Framework (GEF) provides libraries and a predefined

2 http://www.eclipse.org/gmf/

programming architecture for building graphical
editors using the Eclipse infrastructure.

Figure 2: GMF Process Overview.

[9] provides a description of the framework and the
overall process workflow that must be carried out to
use the assets that are supplied by the project, which is
summarized in Figure 2 that has been taken from the
official tutorial. In short, the graphical editor developer
must define (1) the domain model (metamodel), (2) the
graphical definition (available figures), (3) tooling
definition (UI related issues) and (4) the mapping
model which relates the three previous models. Then,
GMF is in charge of producing a generator model
which can be fine tuned. With all these models, the
generative component of GMF automatically produces
the graphical editor.

3.3. The MOFScript Language/Tool

The MOFScript tool is included in the Generative
Modeling Technologies (GMT)3 Eclipse project. The
objective of this project is “to produce a set of
research tools in the area of MDE (Model Driven
Engineering)”. In this context, the MOFScript project
“aims at developing tools and frameworks for
supporting model to text transformation”. This
subproject has been developed in a development
community at SINTEF, supported and tested by the
European Integrated Project MODELWARE.

The MOFScript tool is an implementation of the
MOFScript model to text transformation language [7].
This language was submitted to the OMG as response
to the “MOF Model to Text Transformation Language
RFP” [6]. It provides mechanisms for generating text
from MOF-based models, controlling the sequence of
execution, string manipulation, easy production of files,

3 http://www.eclipse.org/gmt/

traceability of models and generated text, etc. and it is
based on the QVT standard.

4. PervGT: The PervML Generative Tool

Model driven methods must be supported by tools
in order to be applicable in an effective way. The
PervML Generative Tool (PervGT) allows pervasive
systems developers the creation of graphical diagrams
and the automatic translation of these diagrams into the
final implementation code using a transformation
engine.

In section 4.1., the tool is analyzed from an
architectural perspective, where the relevant building
blocks of the tool are identified and explained, whereas
in section 4.2., the tool is described from the end users
perspective and the features of the tool to improve the
usability are remarked.

4.1. Tool Architecture

PervGT gives support to the most relevant aspects
of a model driven generative tool:

• Model management: The models are
manipulated (create / edit / save / load)
conforming to the PervML metamodel.
Furthermore, models should be stored
according to any standard in order to improve
the interoperability with others tools.

• Graphical model edition: To give full support to
the modeling language the tool must represent
the model elements according to a concrete
syntax of the language.

• Code generation: Models are used as input to a
transformation engine which produces as
output source code of a pervasive system.

Figure 3 graphically shows the principal building
blocks of the tool and how are they related. Next, every
tool building block is briefly described.

4.1.1 Model management

The PervGT tool provides support to the creation
and edition of PervML model instances conforming to
the PervML metamodel. The PervML metamodel
determines which model elements can be created and
how they can be related. The PervML metamodel
defines fourty five metaclasses and eighty six
metarelationships.

To implement the PervML metamodel we have created an
Ecore model. Ecore is the language that is provided by the

EMF plug-in to define metamodels.

Figure 3: Tool Architecture.

The primitives that this language provides are a subset
of the modeling concepts that are present in MOF 1.4.
From the PervML Ecore model the plug-in EMF
generates a set of Java classes representing each one of
the PervML metamodel concepts. Moreover, the
generated Java classes provide methods to modify
PervML models according to the PervML metamodel.

To save/store the PervML model instances PervGT
makes use of the EMF runtime persistency capabilities.
The model persistency is achieved according to XMI
2.0. XMI is the OMG standard for interchanging
models.

4.1.2 Graphical model edition

The PervGT graphical editor has been developed
using the GMF Eclipse plug-in. The GMF plug-in
provides an editor to specify in a declarative way
graphical editors, and also provides a runtime where
common functionality related to graphical editors is
already implemented, like model printing or automatic
layout algorithms.

The PervML language proposes different models for
each one of the parts of the pervasive system that is
going to be specified. According to this, the PervGT
tool provides a graphical editor for each one of the
different models that are proposed in the PervML.
Representing model elements with graphics metaphors
makes that new attributes appears those attributes
associated to the model elements, like the size, position
or color of the figure. To store all this new attributes
the GMF plug-in provides two approaches:

1. The information that is related to the model is
stored in one file (model file) and the
information that is related to the graphical

representation is stored in another one
(diagram file).

2. Both the model information and the graphical
representation information are stored in the
same file.

In the PervGT tool the persistency is realized
according to the first option in order to promote
separation of concerns.

Since the PervML language proposes different
models to specify a pervasive system, elements in one
model can be referenced form others models. In order
to support this characteristic, PervGT provide facilities
to refer elements from one diagram to another,
guarantying the consistency between diagrams. Even
the referenced elements can have distinct graphical
representation in each one of the diagrams that they
appear. For instance, a service could be represented in
a diagram as a UML class/interface (where its
operations are shown), and in another diagram the same
service is represented using the “lollipop” notation.

In the process of editing a model there are some
constrains that must be guaranteed. In PervGT there are
defined three constraint validation levels, depending on
the feedback that should be given to the end user:

1. Some actions are forbidden to be carried out
by the users. For instance the PervML
language only allows relationships between
services. The tool shouldn’t allow the creation
of a relationship from a Service and other kind
of element. This kind of constraints is
guaranteed by construction and they don’t
provide feedback to the user due that they can
not be violated.

2. Some actions performed by the user can incur
in a temporal infraction, like creating a new
service and lefting temporally the name blank.
In these cases the tool do not warn the user
about that situation, because it’s probably that
the next action will be to enter the name to the
Service. To check these constraints the tool
provides a validation under demand engine to
avoid bothering the user with feedback
messages while he is working.

3. Finally, some actions should never be allowed
but they can’t be avoided by the tool. For
instance two services shouldn’t share the same
name but users can create two Services with
the same name. In that case the tool cannot
know which one of them is wrong. In this kind
of constraints the tool checks the constraints
online and it notifies users immediately.

All constraints of the diagrams are defined in the
GMF plug-in using OCL expressions. An example of
constrain could be the following:

(Defined over the metaelement Service)
Not(Self.Name.equals(‘PervMLService’))

This constraint is of the third kind, that is to say,
that they are validated online and that it notifies users
immediately about the existence of a service that has
been named using the reserve word PervMLService.

In order to build a complete PervML model, the
graphical diagrams must be completed with a textual
specification. PervML uses the UML Action Semantics
Language (AS) in order to specify part of the system
behaviour. Due to that ASL doesn’t proposes a
standard concrete syntax, PervML uses a subset from
the Kennedy Carter proposal [10]. The tool provides an
editor of textual models where users define ASL
expressions. This editor of textual models has been
developed using the Xtext framework from the
openArchitectureWare (oAW) plug-in. oAW is a
generator framework that provides facilities to create
text editors, checks constraints and has strong support
of EMF.

4.1.3 Code generation

Once the pervasive system is modelled, the
transformation engine can be applied to generate the
code. For this task, we have used the MOFScript
language which provides capabilities navigating
models, creating files, etc. MOFScript takes as input
one model (or several) and applies over one selected
metaelement a contextual rule. The applied rule can
access the element properties, navigate over the related
model elements and invoke other rules.

As PervML has several models, when edition is
finished, the model is divided in several files. In order
to facilitate the translation process, before generating
the code, PervGT joins in one unique model all the
models needed to specify the pervasive system.

The code generation process must navigate through
model elements and generate the needed code. For
achieving this goal, three sets of rules have been
implemented:

1. First, a rule navigates from the root metamodel
element to the different meta-elements that are
the source for creating the files to be generated.

2. The previous rule invokes a set of rules that (1)
setup the environment of the meta-elements that
are interesting from the code generation point
of view and (2) invoke the rules that generates
the text (which are described below). The

configuration of the environment implies
defining files paths, files names and/or files
extensions, creating the files, defining
configuration parameters, therefore these rules
mainly composed by properties definitions and
file statements for creating the files that will be
filled by the followed rules.

3. Finally, a set of rules that generate the text that
is printed in the files which were created before
have been implemented. In order to achieve this
goal, the rules use the properties of the context
meta-element where it was applied and it also
can navigate over the neighbors elements for
accessing their properties. These rules are
mainly composed by escaped output (or print
sentences), since they contain mostly text that
must be copied “as is” to the target file. This
text is completed by sentences that access the
metaelements properties.

Next we show an example of the rules that have
been defined to transform the primitive Component
(which is defined in the PervML language) into one of
the classes that it generates. Partial sections of the rules
are going to be shown to illustrate the principal
differences of the three kinds of rules defined above.

In the first kind of rule, the navigation rules, the
model is navigated in order to reach all the Component
instances.

pervml.PervMLModel::main() {
...
if (generateComponents == true){

self.StructuralModel.Component
->forEach(c:pervml.Component){
c.generateFromComponent()

}
}
...
}

Due to the Component primitive is a first level
concept in the PervML language, the Component
instances are reached in a near straight way from the
model root element. For each one of the Component
instances reached, a contextual rule for setting the
environment is invoked.

In the second kind of rules, the rules that setup the
environment, all the variables needed in the generation
rules are initialized.

pervml.Component::generateFromComponent
(location:String) {

property packageDir ="src/pervml/components"
property baseDir = "Components/"
property projectName = "Comp_"+ self.alias
property projectRoot = baseDir + projectName
property dir =
 projectRoot+"/"+packageDir+"/"+ self.alias

var counter = 1

/** Generating the Component **/
file componentFile (dir+"/Component.java")
self.generateComponent(location)

/** Generating the Component Triggers**/
self.ComponentTrigger->forEach
(trig:pervml.Trigger) {

file triggerFile (dir+"/Trigger"+counter
+".java")
trig.generateTrigger(counter,self)
counter = counter + 1

}
...

}

Once all the variables are correctly initialized the
rule that configures the environment is ready to invoke
the generation rules to obtain the Java code.

In the third kind of rules, text generation rules,
Component properties and literal text are combined
to produce the Java classes. Furthermore some
Component model elements neighbors, like the
Trigger element or the Method element, are visited
in the process of generating the Java code.

import "SharedRules.m2t"

texttransformation Component
(in pervml:
"http:///org/oomethod/pervml.ecore") {

pervml.Component:: generateComponent(){
var idCounter:Integer = 1

<%package org.pervml.application.components.%>
self.alias
<%;import org.osgi.framework.BundleContext;%>
self.genetareDependencyImports()

<%public class Component extends
org.pervml.application.services.%>
self.serviceProvided.name<%.GenericComponent {
public Component(BundleContext c, String
componentPid){
super(c,componentPid);%>

self.ComponentTrigger->
forEach(trig:pervml.Trigger) {

println("\t\t this.listaTriggers.insertar(
new Trigger"+idCounter+"(this));")
idCounter = idCounter + 1

}
<%}//End Component()

public void initializeProperties(){

this.serviceName="%>
self.alias<%";
this.location=" %>self.getLocation() <%";

}%> //End initializeProperties()

self.ComponentFunctionalSpecification.Method
->forEach(me:pervml.Method) {

print("\t protected ")
me.ServiceOperation.generateOperation(
 "Implementation_")
println("{")

if (me.ServiceOperation.returnValue.name
!= "void")

println("\t\t"+me.ServiceOperation.
returnValue.name+" returnValue =" +
me.ServiceOperation.returnDefaultValue()
+";")

self.generateBody()
if (me.ServiceOperation.returnValue.name

!= "void")
println("\t\t return returnValue;")
println("\t\t }")

}
<%}%> //End class Component
}//End generateComponent()
}

The generation rule creates the Component Class,
indicating the genericComponent (service) of which it
extends and which is specified in the models. It also
adds the triggers references of the component; and then
it generates the static and the dynamic part of the
Component class. In other words, it generates the code
that is in charge of initializing the Component
properties (like the name and physical location), and
the body of its methods.

As stated in Section 2, the generated files are
configured in order to use the drivers that interact with
the devices or software systems that implement the
system services. Finally, the generated files are

compiled, packaged into bundles (JAR files) and
deployed in the OSGi server with the implementation
framework and the drivers.

4.2. Tool User Interface

Once the tool architecture has been described, this
section introduces PervGT from the end user point of
view. The tool elements are going to be identified and
briefly described. Furthermore the assistance
capabilities of the tool are going to be analyzed.

In Figure 4, a general view of the tool is shown.
The interface of PervGT is divided in seven parts:
• On the zone 1 we can see the menu bar, where we

can find out all of the functionality that users can
execute. In this menu bar, there is the PervML
Model menu where entries to specify and validate
the system and generate the code have been
included.

• Below, in the zone 2, the tool bar gives direct
access to the most used functionality, like direct
model storage, change zoom, automatic layout and
so on.

Figure 4: The PervGT user interface.

• On the left in zone 3, we can see the Project
Explorer where projects and their contents are
shown. PervGT support drag and drop an element
from the Project Explorer to a diagram so it may
create a link from a diagram to an element of other
diagram.

• Below to the Project Explorer, in zone 4, the view
Outline is shown. This view allows to user to have
a tool global vision of the diagram and it also
remarks the part of the diagram that is visualized
in the main view. Besides, in this view the user can
see diagram elements as a tree form.

• In the middle, zone 5, we can see the editor area
where the model graphic representation is shown
and can be manipulated.

• On the right, in zone 6, we can see the Palette,
where there are some common functionalities and
the graphical elements of the selected diagram that
user can select to paint them in the diagram.

• Finally, at the bottom in zone 7, there are two tabs:
the Problem tab, which shows the problems, or
errors that have been identified in the system and
the Properties tab, which allows users to see and
to manipulate attributes of the diagram selected
element.

Moreover, PervGT provides a cheat sheet for each

diagram in order to guide the system specification
process. A Cheat sheet is a special view that helps the
user through a series of tasks to achieve an overall
goal. The cheat sheets that have been created can
automatically carry out certain actions for help the user.
In figure 5 we show one, the tool cheat sheets for the
Structure diagram.

Figure 5: The cheat sheet assistant.

Furthermore the tool provides a landscape view of

the complete process of specify a new Pervasive

system, as it is show in the figure 6. With the help of
the dashboard, the user gets feedback about the
different diagrams that must be specified to completely
specify a pervasive system using PervML. In the
dashboard the diagrams are represented, including
precedence relationships. The relationships and the
information about what diagrams have been already
created determinate what actions can be executed over
the diagrams.

Using the elements of the dashboard, users can
create new diagrams or even they can generate
diagrams by default, like in the case of the State
Transition Diagram (STD), where the tool can
automatically generate a new STD with one unique
state.

Once the complete system is specified, user can
invoke the transformation engine to generate the final
implementation code. From the “PervML model”
menu, trough the “Generate” entry, the transformation
engine is launched. The transformation engine
generates the Java code and Eclipse projects ready to
import with all the needed references to other eclipse
projects. The goal of generating Eclipse projects is to
facilitate to the user the Java process of manipulating
and compiling the generated code.

Figure 6: The dashboard view.

5. Conclusions

For making true the benefits promised by model

driven approaches, tool support must be provided. The
development of such a kind of tools used to be a hard
task but, hopefully, big players in the software industry
like Microsoft and IBM are betting strong for the
model driven development. As a result of these efforts,
new technologies are rising (for instance, the Eclipse
GMF project and the Microsoft DSL Tools) that
facilitate the development of applications which need

to manage models. In this paper, the Pervasive
Generative Tools (PervGT), an Eclipse/GMF based
tool, has been introduced. PervGT implements a model
driven approach for the development of pervasive
services in ubiquitous environments. More information
about the approach can be found in [2], [3], [4] and [5]

Our future work regarding the tool is focused on
two main research lines. On one hand, we plan to
explore the capabilities of the method/tool for rapid
prototyping pervasive systems. Since the models that
are used in PervML are organized in two layers of
abstraction (analysis and detailed specification), we
think about providing a default detailed specification
which enables the automatic code generation from the
high level of abstraction models. Following this
strategy, pervasive system users could early validate
the abstract models.

On the other hand, we are interested on applying
product line techniques on the pervasive systems field.
We plan to extend the tool for supporting features
diagrams which describe the most commonly
characteristics of vertical domains (home, museums,
retail, etc.). From this feature models, PervML models
will be derived using model-to-model transformations.

In summary, we believe that model driven
approaches can provide many benefits to the currently
so heterogeneous and rapidly changing pervasive
systems field, and these approaches must be supported
by tools. PervGT is our contribution to this vision.

6. References

[1] D. Marples and P. Kriens, “The Open Services Gateway
Initiative: An Introductory Overview,” IEEE
Communications Magazine, vol. 39, no. 12, pp. 110–114,
2001.

[2] J. Muñoz, V. Pelechano and J. Fons “Model Driven
Development of Pervasive Systems” I International
Workshop on Model-Based Methodologies for Pervasive and
Embedded Software (MOMPES 2004), Turku Centre for
Computer Science, 2004, pp 3 - 14

[3] J. Muñoz and V. Pelechano, “Building a Software
Factory for Pervasive Systems Development” Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, Porto, Portugal, June 13-17,
Springer-Verlag GmbH, 2005, 3520, pp. 329-343

[4] J. Muñoz and V. Pelechano, “Applying Software
Factories to Pervasive Systems: A Platform Specific
Framework” 8th International Conference on Enterprise
Information Systems (ICEIS 2006), INSTICC Press, 2006,
pp. 337-342

[5] J. Muñoz, V. Pelechano and C. Cetina, “Implementing a
Pervasive Meetings Room: A Model Driven Approach”
Proceedings of the 3rd International Workshop on
Ubiquitous Computing, IWUC 2006, INSTICC Press, 2006,
pp. 13-20

[6] Object Management Group. “MOF Model to Text
Transformation Language - Request For Proposal” 2004

[7] J. Oldevik, T. Neple, R. Gronmo, J. Aagedal, and A.
Berre, “Toward Standardised Model to Text
Transformations” Model Driven Architecture. Foundations
and Applications: First European Conference, ECMDA-FA,
Springer Berlin / Heidelberg, 2005, 3748, pp. 39 - 253

[8] R. Sharp, “Deploy or die: A choice for application-led
ubiquitous computing research,” in Workshop on What
makes for good application led research in ubiquitous
computing?, 2005.

[9] A. Shatalin, A. Tikhomirov, “Graphical Modeling
Framework Architecture Overview”, Eclipse Modeling
Simposium 2006.

[10] Ian Wilkie, Adrian King, Mike Clarke, Chas Weaver,
and Chris Rastrick. UML ASL Reference Guide. Kennedy
Carter Limited, 2001

