
Building a Software Factory for Pervasive
Systems Development�

Javier Muñoz and Vicente Pelechano

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia,
Camı́ de Vera s/n, E-46022, Spain
{jmunoz, pele}@dsic.upv.es

Abstract. The rise of the number and complexity of pervasive systems
is a fact. Pervasive systems developers need advanced development meth-
ods in order to build better systems in an easy way. Software Factories
and the Model Driven Architecture (MDA) are two important trends
in the software engineering field. This paper applies the guidelines and
strategies described by these proposals in order to build a methodologi-
cal approach for pervasive systems development. Software Factories are
based on the definition of software families supported by frameworks.
Individual systems requirements are specified by means of domain spe-
cific languages. Following this strategy, our approach defines a framework
and a domain specific language for pervasive systems. We use the MDA
guidelines to support the development of our domain specific language
and the automatic generation of the specific source code of a particu-
lar system. The approach presented in this paper raises the abstraction
level in the development of pervasive systems and provides high reusable
assets to reduce the effort in the development projects.

1 Introduction

Computing based systems growth is arriving to all environments of our daily life.
Pervasive systems live around us providing services to the inhabitants of a home,
the workers of an office or the drivers in a car park. We know that requirements
for current and future pervasive systems involve a great diversity of types of
services [14]. Such different services as multimedia, communication or automa-
tion services need hardware devices that different manufacturers provide. These
devices live in several networks running on different platforms. The development
of such systems is a very hard task because it should achieve devices interoper-
ability in an heterogeneous environment in order to satisfy system requirements.

Therefore, there is a need of new solid engineering methods for developing ro-
bust pervasive systems. Recently, two compatible approaches have been proposed

� This work has been developed with the support of MEC under the project DESTINO
TIN2004-03534 and cofinanced by FEDER.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 342–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Building a Software Factory for Pervasive Systems Development 343

for developing software systems in a highly productive and cost-effective way.
Software Factories [4] and the Model Driven Architecture (MDA) [10] provide
strategies for raising the abstraction level in the software development process
and making affordable the development of complex systems. The application of
the guidelines defined in this approaches to pervasive systems development can
help to build better systems in an easier way than applying traditional methods.
Software Factories focus on producing reusable assets that reduce the overall
development time. On the other hand, MDA promotes the use of high abstrac-
tion level models which provide the system developers with an intuitive way for
describing the system. These models should be automatically transformed to the
final implementation code.

The work presented in this paper proposes a methodological approach to
pervasive systems development following Software Factories principles and MDA
guidelines. The contribution of is this work is double. On the one hand, we apply
the Software Factories proposal to a concrete domain. Then, this work provides
an application case that can be used as a recipe for the construction of Software
Factories for other domains. On the other hand, our approach contributes to the
state of the art in pervasive systems development. We provide a model driven
development method for the specification and implementation of pervasive sys-
tems. Our approach establishes a methodological framework for automating the
construction of high-quality pervasive systems in a productive way

The structure of the paper is the following: Section 2 briefly introduces the
Software Factories and MDA approaches. We justify the application of these
proposals to Pervasive Systems development. Section 3 describes Pervasive Sys-
tems main characteristics and it presents our point of view for developing these
kind of systems. We introduce a Pervasive System for a meetings room in order
to illustrate our approach. Section 4 describes our application of Software Fac-
tories and MDA to Pervasive Systems. We present our strategy to apply MDA
guidelines into our methodological approach. We propose techniques for every
MDA building block. The Pervasive Modeling Language (Perv-ML), a modelling
language for describing Pervasive System using high abstraction level constructs,
is introduced. Next, a framework for developing Pervasive Systems is presented.
Finally, section 5 includes some conclusions and further work.

2 Software Factories and MDA

A Software Factory, as defined in [4], is a software product line that config-
ures extensible tools, processes and content [...] to automate the development
and maintenance of variants of an archetypical product by adapting, assembling
and configuring framework-based components. Therefore, Software Factories fo-
cus on the development of similar systems encouraging the reuse of architectures,
components and know-how.

On the other hand, MDA is, as described in the IEEE Software special issue
on Model Driven Development [8], ”a set of OMG standards that enables the
specification of models and their transformation into other models and complete



344 J. Muñoz and V. Pelechano

systems.”. Following this approach, system developers build high level abstrac-
tion models (called Platform Independent Models, PIM) and transform them
obtaining models that directly represent the final software product (called Plat-
form Specific Model, PSM).

Therefore, there is a natural integration of these two approaches. MDA tech-
niques can be used to support the development of domain specific languages for
building high level abstraction models. Then, these models can be transformed
in order to obtain the specific source code of a system in the context of a family
of systems.

Although the use of OMG languages is explicitly avoided and criticized in
[4], we think that the use of standards is a key aspect for the success of these
approaches, even when the standards are not as good as we would like.

In short, we are interested in the strengths of both approaches:

– from Software Factories we get their focus on reuse by means of domain
specific development.

– from MDA we get their focus on high level abstraction models and automatic
code generation.

In order to describe this specific domain, next section points out pervasive sys-
tems main characteristics.

3 Pervasive Systems

Pervasive systems try to build environments where computation elements dis-
appear from the user point of view but their functionality is still provided. This
vision was initially described by Weiser [15] in the early 90s and it is based on
the construction of computing-saturated environments properly integrated with
human users. The big challenge of this vision is the integration of several existing
technologies (handheld computers, broadband communications, sensor devices,
etc.) in an homogeneous whole. The development of such a kind of systems
requires the contribution of several engineering and research fields: hardware
designers, human-computer interaction experts, software engineers, etc. We can
find pervasive systems in environments like cars, offices, public building and, of
course, our homes.

Requirements for current and future pervasive systems involve a great diver-
sity of types of services [14]. Such different services as multimedia, communica-
tion or automation services need hardware devices that different manufacturers
provide and external software systems. These elements live in several networks
running on different technological platforms, but they can not satisfy isolatedly
all system requirements. The elements that compose the system must work to-
gether for achieving some system goals. Therefore we can distinguish two sources
of service providers: commercial off-the-shelf (COTS) elements1 and the
software system that integrates all the elements of the pervasive system.

1 We extend the definition of COTS to include hardware devices



Building a Software Factory for Pervasive Systems Development 345

5075mm

31
75

m
m

700mm

55
0m

m

3675mm

55
0m

m

700mm

31
75

m
m

208mm0mm0mm

14
9m

m0mm

14
9m

m

208mm0mm

1800mm

90
0m

m
90

0m
m

T M

Smart Blackboard

Presence
detector

Blinds

Fluorescent
panel

Lamps

Fig. 1. The map of a smart meetings room

Considering this point of view, the development of a pervasive system consists
of :

– The selection of the suitable COTS devices or external software
systems. These elements should provide the services that users require ei-
ther isolatedly or interacting with other elements.

– The development of the software system that integrates the exter-
nal elements in order to provide the services that users require.
The development of that software may imply the use of different technologies
but some gateway technology should exist.

We describe a pervasive system for a meetings room in order to illustrate
our approach. In such a system, depicted in Fig. 1, users require services like
lighting management by rooms presence, blinds management or drawings sharing.
Users do not mind what devices compose the system, they just need a specific
functionality. System architects deal with selecting the most suitable devices
(like lighting bulbs or a smart board in our case of study) for providing that
functionality.

4 A Software Factory for Pervasive Systems Development

As outlined in section 3, the development of a pervasive system implies the use of
many different technologies in order to satisfy all users requirements [13, 6]. Usu-
ally these technologies provide low abstraction level constructs to the developer.



346 J. Muñoz and V. Pelechano

Therefore, applying a MDA approach to pervasive systems supposes jumping a
very wide abstraction gap that must deal with the technology heterogeneity.

Following the Software Factories approach, a framework for pervasive systems
should be developed applying domain engineering principles. This framework
raises the abstraction level of the target platform and, therefore, the amount of
code is sensibly reduced.

Thus our proposed methodological approach to pervasive systems develop-
ment is based on:

– the construction of a domain specific language for the description of pervasive
systems.

– the construction of a framework that raises the abstraction level by providing
similar constructs to those defined by the domain specific language.

– the definition of mappings or rules for the transformation of models, that
are built using the domain specific language, to code that fulfils the defined
framework.

Next subsections describe both the MDA point of view of the proposed ap-
proach and the main architecture of the framework for pervasive systems. Sub-
section 4.1 presents the techniques for the construction of the domain specific
language and the definition of the mapping rules. Subsection 4.2 introduces the
implementation framework for developing pervasive systems.

4.1 MDA for Pervasive Systems

As we have justified in section 2, the MDA approach can be used in a Software
Factory to support the development of domain specific languages and the auto-
matic code generation step. The standard defines several building blocks for the
definition of MDA based methods, but it does not specify concrete techniques
to be used in each step. In order to put MDA in practice we should provide con-
crete techniques for each building block. These techniques must be defined using
OMG standards. Our approach proposes the following techniques for applying
MDA (see Fig. 2) to pervasive systems development:

1. Aprecise language forbuilding Platform IndependentModels (PIMs).
This is the domain specific language for precisely describing pervasive sys-
tems using high abstraction level constructs. We have defined the Pervasive
Modeling Language (Perv-ML) (outlined next) in order to build PIMs.

Source 
Code

PIM Model to Model 
Transformation

PSM Model to Code 
Transformation

MDA 
Components

Proposed
Techniques

OSGi Code

Perv-ML Graph Grammars
OSGi 

Metamodel Templates

Fig. 2. MDA building blocks and our proposed techniques for pervasive computing



Building a Software Factory for Pervasive Systems Development 347

2. One or many modelling languages for building Platform Specific
Models (PSMs). The conceptual primitives of these languages must be di-
rect representations of constructs of the technology they model. In our case,
the target platform is the framework for pervasive systems developed as re-
sult of the domain engineering activity. As we will see next, this framework
is tightly based on OSGi [7]. OSGi is a standard defined by the Open Ser-
vice Gateway Initiative (OSGi) that describes a framework that was initially
created for hosting software of residential gateways. Then, we have defined
an OSGi metamodel for building Platform Specific Models.

3. PIM to PSM transformations. These transformations define how a PIM
can be converted to a PSM. Currently, model transformations is a hot re-
search topic. We apply graph grammars for defining the transformations
from Perv-ML to OSGi.

4. PSM to source code transformations. Finally, the code generation from
the PSMs is the last step of the development method. We are applying
templates to the elements of models in order to obtain the source code.

4.1.1 Pervasive Modelling Language (Perv-ML): The PIM Language
Perv-ML is a language designed with the aim of providing the system analyst
with a set of constructs that allow to precisely describe the pervasive system.
Perv-ML promotes the separation of roles where developers can be categorized
as analysts and architects. Fig. 3 shows the language organization. The dashed
arrow of Fig. 3 defines the construction order of the conceptual models that
our approach proposes. In short, systems analysts capture system requirements
and describe the pervasive system at a high level of abstraction using the ser-
vice metaphor as the main conceptual primitive. Analysts build three graphical
models that constitute what we call the Analyst View. On the other hand,
system architects specify what COTS devices and/or existing software systems
realize system services. Architects build other three models that constitute what
we call the Architect View. Next we give a more detailed description of the
language.

Analyst

Architect

Services
Model

Structural
Model

Binding
Providers

Model

Interaction
Model

Functional
Model

Component
Structure

Model

Fig. 3. The six models of Perv-ML



348 J. Muñoz and V. Pelechano

setIntenisty(entrada value : int)

intensity : int

«service»
GradualLighting

switch_on()
switch_off()

its_lighting : bool

«service»
Lighting

raise()
lower()

«service»
BlindManagement

start()
finish()
updateSketch(entrada new_draw : Sketch)
saveCurrentSketch()
deleteCurrentSketch()
emptySavedSketches()

working_sketch : Sketch
saved_sketches : List
work_in_progress : bool

«service»
SharedBlackboard

presence : bool

«service»
PresenceDetection

send(entrada data : Object, entrada address : string)

«service»
InformationDelivery

newMeeting(entrada data : Meeting)
deleteMeeting(entrada id : int)
newAttender(entrada attender : Attender)
asignAttender(entrada meeting_id : int, entrada attender_id : int)

meetings_list : List
current_meeting : Meeting

«service»
MeetingsManagement

«service»
LightingByPresence

0..*

1

0..* 1..*

Fig. 4. Meetings room Services Model

The Analyst View. The Analyst describes a pervasive system specifying a
set of functional elements that provide a specific set of services that the user of
the system requires. Those functional elements are what we call service instances.
For instance, if the meeting room described above has two binds and any user
wants to control them independently, the pervasive system must provide two
elements (instances) that provide the bind management service. Following this
approach we propose a step previous to the building of the Pervasive System
Conceptual Structure. In this first step, we introduce the Services Model where
the analyst defines services and their relationships. Perv-ML uses and extends
UML Class Diagram for representing the description of the services, and the
State Transition Diagram for modelling the behaviour. Fig. 4 shows the Service
Model of our meeting room.

Analyst defines the pervasive system functional structure in the Structural
Model. This model specifies the service instances of the system which are rep-
resented by a component. Perv-ML provides components as abstractions of the
low-level elements that realize the services. Every system component provides
one of the services described in the Services Model. In Fig. 5. we can see that
the LightingManagement component has dependency relationships with the
MainLighting and the Presence components due to the aggregation relation-

GradualLighting PresenceDetection

LightingByPresence

BlindManagement BlindManagement

MeetingsManagement SharedBlackboard

InformationDelivery

PresenceMainLighting

LightingManagement

LeftBlind RightBlind

MeetingRoom201 Blackboard201

MainDeliverySystem

Fig. 5. Components that provide the services of our case of study system



Building a Software Factory for Pervasive Systems Development 349

MainLightingLeftBlind RightBlind

{BlackBoard201.work_in_progress = true}

lower()

lower()

setIntensity(20)

Fig. 6. An interaction that lowers blinds and sets lighting to 20% of its maximum

intensity

ship defined in the Services Model. Perv-ML represents the Structural Model as
a UML Component Diagram.

As we have said in section 3, system services must cooperate in order to
satisfy all the system requirements. Analyst describes services cooperation in
the Interaction Model. An interaction is a communication between services for
providing a specific functionality, so analyst must describe as many interactions
as joint functionality the system provides. Every interaction is described by an
adapted UML Sequence Diagram, therefore the Interaction Model is composed
by several sequence diagrams. Fig. 6 shows an interaction for suiting lighting
when the blackboard service is being used. It lowers both blinds and it sets the
lighting service at a 20% of its maximum power. This interaction takes place
when somebody starts using the blackboard.

The Architect View. We need to build a detailed specification of the lower
level artefacts that realize system services in order to have a complete and opera-
tive pervasive system description. We use the term Binding Provider for referring
artefacts that the pervasive system manages to interact with its physical or log-
ical environment. A device, a sensor, an actuator or an external software system
can be binding providers. Architect describes every binding provider type that
is introduced to implement system services in the Binding Providers Model.
A type of binding provider represents a set of devices or software systems that
provide a similar functionality without detailing manufacturer specific informa-
tion. The Binding Provider Model is depicted using a stereotyped UML Class
Diagram. Fig. 7 shows some binding providers of our meeting room. The usage
of Lamp and FluorescentPanel actuators is different although both can be used
for lighting a room.

The System architect uses the Component Structure Specification to
specify the bindings providers that realize a component of the Structural Model.
For instance, a component that provides a lighting management service can be
realized by three lamps and a fluorescent panel. In such a case, the Binding
Providers Model must contain the lamp description. See Fig. 8 of the Structure



350 J. Muñoz and V. Pelechano

on()
off()

«actuator»
Lamp

onAll()
offAll()
onOne(entrada tube_id : int)
offOne(entrada tube_id : int)

tubes : int

«actuator»
FluorescentPanel

send(entrada message : Text, entrada attachments : List, entrada e-mail : string)

smtp_server : string
max_size : int

«software_service»EmailService

Fig. 7. Some elements of a Binding Providers Model

«actuator»
L1 : Lamp

«actuator»
L2 : Lamp

«actuator»
L3 : Lamp

«actuator»
MeetingRoomPanel : FluorescentPanel

Fig. 8. Structure Specification of the MainLighting component

Specification for the MainLighting component included in our meeting room
Structural Model (see Fig. 5).

Finally, architect must specify how every component operation is realized.
In the Component Functional Specification architect defines the sequence
of actions that the component realize when an operation is invoked. Architect
specifies actions using the UML Action Semantic Language (ASL). ASL does
not have an official concrete syntax, but many proposed syntaxes are available
like the one by Kennedy Carter [16].

Using the Perv-ML approach the system is completely described in a tech-
nology and manufacturer independent way. When a new technology emerges,
system description does not need to be modified. Moreover, if we want to use a
device of a new manufacturer we only have to develop a driver that adapts its
interface to the generic interface used in the Binding Providers Model. Even if
the system architect decides to change a component specification, analyst view
remains unmodified. We have isolated changes by means of stratification through
abstraction levels.

4.1.2 OSGi Metamodel: The PSM Language
As described above, there are a lot of implementation technologies for developing
pervasive systems. Using only a low-level technology for control (LonWorks, EIB,
UPnP) , data (Ethernet, Bluetooth, WiFi) or multimedia (IEEE1394, HAVi)
networks is not possible because of the diversity of services required, therefore
we have selected OSGi, a middleware platform that has bridges to many of
them and provides high-level constructs for building pervasive systems. This



Building a Software Factory for Pervasive Systems Development 351

middleware help us notably for filling the abstraction gap between the domain
specific language and the target implementation technology.

The Open Service Gateway Initiative (OSGi) [7] is an association of compa-
nies, that includes Sun Microsystems, IBM, Oracle and Nokia, created with the
aim of developing an open standard for service gateways. A service gateway is
the platform where resides the software for providing home services. It manages
home devices and it communicates with external networks. The standard defines
Java APIs for libraries that the OSGi platform provides and several standard
services like Logging, HTTP Server, Device Management, etc. Our own frame-
work is built on top of this middleware using their runtime environment and
services.

In order to integrate OSGi in the MDA phase of our development method, we
have to create models which are built using OSGi concepts. We have developed
an OSGi metamodel for specifying these concepts and their relationships. The
models built with a OSGi-only metamodel cannot be seen as final implemen-
tation models because every OSGi concept is actually implemented as a Java
entity. For instance, an OSGi Bundle is implemented as a JAR package, and an

-isInterface : Boolean
-fullName : String

JavaClass

JavaPackage

-name : String

JavaElement

-visibility : VisibilityKind

ClassFeature

ClassMember

BehaviouralFeature

Method

-type : String

TypedElement

FieldFeatureParameter

-kind : CodebaseKind
-uri : String

Codebase

-javaPackage1

-classes0..n

-classes

0..n

-codebase 1

-declaredBy 0..1

-features

0..n

1

-parameters 0..n

OSGiProperty

-relativeName : String

ClassResource

-resources0..n
-codeBase1

OSGiBundle

OSGiMethod

OSGiServiceImplementationOSGiServiceInterface

OSGiParameter

OSGiBundleActivator

OSGiManifest

OSGiOperation

Fig. 9. An OSGi/Java metamodel



352 J. Muñoz and V. Pelechano

OSGi Service Implementation is implemented through a Java Class. Therefore,
a fully functional modelling language for specifying OSGi based systems should
include a complete Java metamodel. Then, the inclusion of OSGi concepts can
be done as Java entities extensions with new specific constraints.

Our complete OSGi/Java metamodel is based on the Java metamodel de-
veloped by the NetBeans Community 2. This metamodel has been adapted and
extended to fit it in our needs. Fig. 9 shows a view of the Java metamodel with
our extensions. Elements that are mapped from the OSGi metamodel have been
depicted in grey.

4.1.3 Graph Grammars. Defining the Model Transformation Engine
As noted earlier, the definition of transformations between PIM and PSM involve
jumping a wide gap between abstraction levels. Currently standards for the
definition of transformations do not exist [2]. OMG published a Request For
Proposal [9] in order to achieve a language for defining transformation between
metamodels built with its Meta Object Facility (MOF). In the meantime, we are
using graph grammars [3] as the model transformation engine. There exist many
works [1, 5, 12] that propose graph grammars as a suitable technique for model
transformation. From a mathematical point of view, a model can be seen as a
graph where model elements are labelled nodes and the relationships between
model elements are edges. In this way we can apply all the existing knowledge
for defining graph transformations in order to achieve model transformations in
the MDA context. Graph grammars have many advantages over other proposed
techniques: a formal mathematical sound, algorithms for their application and
a graphical representation for intuitively defining transformations.

Fig. 10 shows two rules for model transformation from Perv-ML models to
OSGi-based models. Every rule is composed by a Left Hand Side (LHS), that
defines a pattern to be matched in the source graph, and a Right Hand Side that
defines the replacement for the matched subgraph. For instance, first rule says
that when a Perv-ML Component element is found it must be transformed into
a Bundle element and references to a Java Class and Manifest elements have
to be created and linked to the Bundle. Following this approach, transformation
from Perv-ML models to OSGi-based models is defined following a set of rules
like those defined in this section.

4.2 A Framework for Pervasive Systems Development

The framework for pervasive systems has been developed for supporting Perv-
ML, the domain specific language for this kind of systems. Therefore, the scope
and approach of the framework is inherited from the language. This means that,
as in Perv-ML, the framework is based on the assumption that the software of
a pervasive system must integrate many devices and external software systems
in order to provide the services that the users require. Following this approach,
users should deal with services and the software is in charge of the management of

2 http://java.netbeans.org/models/java/java-model.html



Building a Software Factory for Pervasive Systems Development 353

:=

:=

1)

3)
2)

1')

2)

1)

2)
1')

3)

name : String = ???

 : PervML_Component
name : String = match(1).name

 : OSGi_Bundle

relativeName : String = manifest.mf

 : OSGi_Manifest
isInterface : Boolean = false
fullName : String = match(1).name+'Activator'

 : Java_Class

name : String = ???

 : PervML_Service

isInterface : Boolean = false
fullName : String = ???

 : OSGi_ServiceImplementation

name : String = SystemServices

 : OSGi_Bundle

isInterface : Boolean = false
fullName : String = match(2).name

 : OSGi_ServiceImplementation

isInterface : Boolean = true
fullName : String = match(1).name

 : OSGi_ServiceInterface

name : String = SystemServices

 : OSGi_Bundle

3)

Fig. 10. Two rules that define models transformation

the devices or external systems for providing that services. Then, our framework
provides implementation primitives for directly supporting Perv-ML conceptual
primitives.

As described in subsection 4.1, we are using OSGi as platform for the devel-
opment of pervasive systems. This technology fits smoothly in our approach and
minimizes the abstraction gap to be filled. Many Perv-ML conceptual primitives
maps directly to OSGi implementation concepts, so OSGi can be considered a
key component of our framework.

Several architectures can be used when developing with OSGi. Fig. 11 shows
the global structure of the systems developed with our method. Packages in the
figure represent sets of resources (classes, interfaces, icons, etc.) with a common
goal. Dashed arrows represent dependence relationships. For instance, the Ser-
vice 2 package requires some resource located in the Device 1 package. We use a
three-tier architecture adapted to this kind of systems. Layers of the architecture
are described next.

4.2.1 User Interface Layer
The user interface layer is currently implemented as web pages using the HTTP
Service integrated in the OSGi platform. We divide this layer in two components.

– The main user interface is the entry door to the system and is in charge
of the organization of the access to the system services (by localization, by
kind of service, by more used services, etc.) and security issues.

– The individual services interface manage the interaction of every par-
ticular service in the system. Services of the same type have the same user
interface. For instance, in Fig. 11 services 2 and 3 (maybe lighting services)
are managed by the user interface 2 (UI2).



354 J. Muñoz and V. Pelechano

User Interface

UI 1 UI 2 UI n

Service 1 Service 2 Service 3 Service n

Driver 1 Driver 2 Driver 3 Driver n

...

...
Management 

Services

Fig. 11. Global architecture of the framework

4.2.2 Logical Layer
Elements in the logical layer can be classified in two groups attending their
purpose:

– Services for supporting the functionality specified in the Perv-ML
model. These services are implemented as Java Classes and registered as
OSGi Services. All of them must implement the PervMLService interface for
ensuring a proper execution of the system. This interface has operations for
checking invariant constraints, managing concurrent execution, error han-
dling, etc.

– Services for the management of the system execution. This set of
services are in charge of ensuring global constraints satisfaction, checking
trigger conditions, providing web services and other auxiliar functionality.
These services are common to all the applications based on this frame-
work.

4.2.3 Communication Layer
Finally, the Communication Layer manages the interaction of the pervasive
system with its physical or logical environment. This layer is composed by drivers
that are used by the services in the upper layer. Every device or external soft-
ware system is repesented in this layer by a driver. Drivers in this layer are
implemented as Java Classes and registered as OSGi Services.

For avoiding interface heterogeneity, a unified interface is used for all similar
devices (or software systems). This means that, for instance, in our example



Building a Software Factory for Pervasive Systems Development 355

there is a unique interface for all lamps, all instant messaging systems or all
video projectors. Then, the driver is in charge of adapting that interface to the
actual device interface. The selection of the specific drivers for every generic
device interface happens in model compilation time.

5 Conclusions

In this paper we have presented a methodological approach for the development
of pervasive systems. Following the Software Factories strategy, our approach is
based on the construction of a framework for a family of similar systems and
a domain specific language (Perv-ML) for the specification of family members
requirements. We follow the MDA standard for the definition of the domain spe-
cific language and the automatic code generation step. This merged approach can
help to build better pervasive systems in an easier way than applying traditional
methods.

We have experimented many of these benefits in the development of Informa-
tion Systems. Our research group have developed a model driven method (called
OO-Method [11]) with full code generation capabilities that has been imple-
mented in the OlivaNova Model Execution System 3. Our aim is to apply these
successful ideas to pervasive systems development. This work was initially devel-
oped in the context of a R&D project together with Telefonica I+D. Perv-ML
has been applied for the specification of applications for Smart Homes.

We are currently working on providing tool support for several steps of the
method, like the construction of models using Perv-ML and the automatic trans-
formations of that models. Another important ongoing work is the specification
of the transformation rules from Perv-ML to OSGi code to implement the spe-
cific part of the framework. Finally, we are implementing pervasive systems with
our framework in order to obtain feedback for tuning our proposal.

References

1. György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza,
and Dániel Varró. VIATRA: Visual automated transformations for formal verifi-
cation and validation of UML models. In Julian Richardson, Wolfgang Emmerich,
and Dave Wile, editors, Proc. ASE 2002: 17th IEEE International Conference on
Automated Software Engineering, pages 267–270, Edinburgh, UK, September 23–
27 2002. IEEE Press.

2. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, 2003.

3. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook on
Graph Grammars and Computing by Graph Transformation, volume 2 Applica-
tions, Languages and Tools. World Scientific Publishing Co., Inc., 1999.

3 http://www.care-t.com/



356 J. Muñoz and V. Pelechano

4. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories.
Wiley Publising Inc., 2004.

5. Reiko Heckel, Jochen Küster, and Gabriele Taentzer. Towards automatic trans-
lation of UML models into semantic domains. In Proc. AGT 2002: Workshop on
Applied Graph Transformation, pages 174–188, 2002.

6. M. Hwang, Y. Jeon, and J. Kim. Standarization activities and technology com-
petitors for the in-home networking. In Internation Conference on Communication
Technology, 1998.

7. Dave Marples and Peter Kriens. The Open Services Gateway Initiative: An Intro-
ductory Overview. IEEE Communications Magazine, 39(12):110–114, 2001.

8. Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest editors’ intro-
duction: Model-driven development. IEEE Software, 20(5):14–18, 2003.

9. Object Management Group. OMG MOF 2.0 Query, Views, Transformations Re-
quest for Proposals.

10. Object Management Group. Model Driven Architecture Guide, 2003.
11. Oscar Pastor, Jaime Gómez, Emilio Insfrán, and Vicente Pelechano. The OO-

Method Approach for Information Systems Modelling: From Object-Oriented Con-
ceptual Modeling to Automated Programming. Information Systems, 26(7):507–
534, 2001.

12. Shane Sendall. Combining Generative and Graph Transformation Techniques for
Model Transformation: An Effective Alliance? In 2nd OOPSLA Workshop on
Generative Techniques in the context of Model Driven Architecture, 2003.

13. Kenneth Wacks. The successes and failures of standardization in home systems.
In 2nd IEEE Conference on Standardization and Innovation in Information Tech-
nology, 2001.

14. Roy Want, Trevor Pering, Gaetano Borriello, and Keith I. Farkas. Disapearing
Hardware. Pervasive Computing, 1(1), 2002.

15. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–
104, Sept. 1991.

16. Ian Wilkie, Adrian King, Mike Clarke, Chas Weaver, and Chris Rastrick. UML
ASL Reference Guide. Kennedy Carter Limited, 2001.


	Introduction
	Software Factories and MDA
	Pervasive Systems
	A Software Factory for Pervasive Systems Development
	MDA for Pervasive Systems
	A Framework for Pervasive Systems Development

	Conclusions

